A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid

نویسندگان

  • Amir Beck
  • Marc Teboulle
چکیده

We consider the nonconvex problem (RQ) of minimizing the ratio of two nonconvex quadratic functions over a possibly degenerate ellipsoid. This formulation is motivated by the so-called Regularized Total Least Squares problem (RTLS), which is a special case of the problem’s class we study. We prove that under a certain mild assumption on the problem’s data, problem (RQ) admits an exact semidefinite programming relaxation. We then study a simple iterative procedure which is proven to converge superlinearly to a global solution of (RQ) and show that the dependency of the number of iterations on the optimality tolerance ε grows as O( √ ln ε−1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FGP approach to multi objective quadratic fractional programming problem

Multi objective quadratic fractional programming (MOQFP) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the objecti...

متن کامل

SDO relaxation approach to fractional quadratic minimization with one quadratic constraint

In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

Testing copositivity with the help of difference-of-convex optimization

We consider the problem of minimizing an indefinite quadratic function over the nonnegative orthant, or equivalently, the problem of deciding whether a symmetric matrix is copositive. We formulate the problem as a difference of convex functions (d.c.) problem. Using conjugate duality, we show that there is a one-to-one correspondence between their respective stationary points and minima. We the...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2009